Photoheterotrophic microbes in the Arctic Ocean in summer and winter.

نویسندگان

  • Matthew T Cottrell
  • David L Kirchman
چکیده

Photoheterotrophic microbes, which are capable of utilizing dissolved organic materials and harvesting light energy, include coccoid cyanobacteria (Synechococcus and Prochlorococcus), aerobic anoxygenic phototrophic (AAP) bacteria, and proteorhodopsin (PR)-containing bacteria. Our knowledge of photoheterotrophic microbes is largely incomplete, especially for high-latitude waters such as the Arctic Ocean, where photoheterotrophs may have special ecological relationships and distinct biogeochemical impacts due to extremes in day length and seasonal ice cover. These microbes were examined by epifluorescence microscopy, flow cytometry, and quantitative PCR (QPCR) assays for PR and a gene diagnostic of AAP bacteria (pufM). The abundance of AAP bacteria and PR-containing bacteria decreased from summer to winter, in parallel with a threefold decrease in the total prokaryotic community. In contrast, the abundance of Synechococcus organisms did not decrease in winter, suggesting that their growth was supported by organic substrates. Results from QPCR assays revealed no substantial shifts in the community structure of AAP bacteria and PR-containing bacteria. However, Arctic PR genes were different from those found at lower latitudes, and surprisingly, they were not similar to those in Antarctic coastal waters. Photoheterotrophic microbes appear to compete successfully with strict heterotrophs during winter darkness below the ice, but AAP bacteria and PR-containing bacteria do not behave as superior competitors during the summer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methane excess in Arctic surface water- triggered by sea ice formation and melting

Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on m...

متن کامل

Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

[1] Numerical experiments are conducted to project arctic sea ice responses to varying levels of future anthropogenic warming and climate variability over 2010–2050. A summer ice‐free Arctic Ocean is likely by the mid‐2040s if arctic surface air temperature (SAT) increases 4°C by 2050 and climate variability is similar to the past relatively warm two decades. If such a SAT increase is reduced b...

متن کامل

Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles

Temperature inversions are one of the dominant features of the Arctic atmosphere and play a crucial role in various processes by controlling the transfer of mass and moisture fluxes through the lower troposphere. It is therefore essential that they are accurately quantified, monitored and simulated as realistically as possible over the Arctic regions. In the present study, the characteristics o...

متن کامل

Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing

Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in ...

متن کامل

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 15  شماره 

صفحات  -

تاریخ انتشار 2009